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VGP393C – Week 5

⇨ Agenda:
­ Quiz #2
­ Supporting Structures

­ SPMD
­ Master / worker
­ Loop parallelism
­ Shared Queue
­ etc.

­ Assignment #2 due
­ Assignment #3 started
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Software structures that 
“support the expression of 
parallel algorithms.1”

1 http://www.cise.ufl.edu/research/ParallelPatterns/supporting_structures.htm

http://www.cise.ufl.edu/research/ParallelPatterns/supporting_structures.htm
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SPMD

⇨ In the single program, multiple data (SPMD) pat-
tern, N UEs execute the same code concurrently 
on different data

­ Each UE may have a unique ID that is also 
considered to be “different data”
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SPMD

⇨ Fundamental question: can the computation be 
structured so that UEs can be setup at the start 
and persist through the life of the program?

­ Implicitly requires that the same (or nearly same) 
code can be used on all data

­ Plays well with concurrency based on data 
decompositions
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SPMD

⇨ Advantages:
­ Avoids thread creation / destruction costs implicit in 

other patterns
­ Easy reuse of sequential code

­ Each thread is, basically, a copy of the sequential version
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SPMD

⇨ Common structure of SPMD programs:
­ Bootstrap – perform the “serial” initialization opera-

tions
­ Set unique IDs – Each UE gets some sort of unique 

identifier.  This is usually passed in, and is often de-
rived from the thread ID.

­ Run program on each UE – Each UE can use its 
unique ID to achieve different behavior

­ Distribute data – Each UE receives its unique data 
using its unique ID

­ Finalize – perform the “serial” shutdown procedures
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Fork / Join

⇨ A single, “master” UE creates additional UEs 
(forks) and waits for them to complete (joins)

­ Names “fork” and “join” come from the name of the 
old Unix process creating and wait-for-completion 
functions

­ Implies that threads are created and terminated, but 
this is not strictly necessary

­ The join can be implemented as a true join or a barrier
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Fork / Join

⇨ Fundamental questions:
­ How is data partitioned into local and global blocks?
­ How do the UEs interact?
­ What does the “master” thread do while waiting?
­ How are tasks mapped to UEs?
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Fork / Join

⇨ Two common task mappings:
­ “Direct” mapping – UEs have one task mapped
­ “Indirect” mapping – Tasks are dynamically assigned 

to threads 
­ Thread creation and destruction is expensive
­ This cost is mitigated by creating a static pool of threads
­ Threads are “mapped” as needed by sending them tasks
­ Usually one UE per PE
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Fork / Join

⇨ Conceptually similar to SPMD
­ Fork / Join can be used at multiple levels within the 

larger program, but SPMD is a top-level structure
­ SPMD fixes the number of UEs at the start
­ All UEs in SPMD perform the same computation
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Master / Worker

⇨ Master / worker pattern works well when:
­ Per-task work loads are variable and unpredictable

­ i.e., static scheduling doesn't work well

­ Computationally intensive part of the program isn't a 
loop or loop-like

­ Computer power of available PEs varies
­ As is the case with some SMT implementations
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Master becomes a worker 
after generating initial task



© Copyright Ian D. Romanick 2008

20-August-2008

Master / Worker

⇨ Fundamental question: How do workers 
determine computation is complete?

­ We've already encountered this problem in the 
Mandelbrot fractal generator

⇨ Several possible strategies for simpler cases:
­ If all work is known at the start, workers can terminate 

when the work queue is empty
­ Master or a worker can detect completion and add a 

poison pill task to the queue
­ Tree-like computation can hierarchically determine 

that computation has completed
­ Propagate completion “up” the tree
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Loop Parallelism

⇨ Many programs have a small number of 
computationally expensive loops
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Loop Parallelism

⇨ Advantages:
­ Sequential equivalence – Parallelized loops can easily 

be serialized.  This makes code easier to test, debug, 
and maintain

­ Incremental parallelization – One loop can be paral-
lelized at a time.  Step-by-step parallelization allows 
incremental test and allows parallelization efforts to 
stop when the program is “fast enough.”
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Loop Parallelism

⇨ Initial steps:
­ Find the “hot spots”
­ Eliminate loop-carried dependencies
­ Parallelize the loops
­ Optimize scheduling

⇨ Additional transformations:
­ Merge loops
­ Coalesce nested loops
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Loop Parallelism

for (i = 0; i < N; i++) {
    do_some_work(i);
}

/* code that does not depend on the results of
 * the above loop and that the following loop
 * does not depend on
 */
...

for (i = 0; i < N; i++) {
    do_other_work(i);
}
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Loop Parallelism

for (i = 0; i < N; i++) {
    do_some_work(i);
    do_other_work(i);
}

... This transformation can 
happen before making 
the loop parallel...much 
easier to test!

⇨ More work in each iteration (task) reduces the 
total parallel overhead
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Loop Parallelism

for (i = 0; i < N; i++) {
    for (j = 0; j < M; j++) {
        do_some_work(i, j);
    }
}
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Loop Parallelism

for (i = 0; i < N * M; i++) {
    do_some_work(i / M, i % M);
}

This transformation can 
happen before making 
the loop parallel...much 
easier to test!

⇨ More iterations (tasks) simplifies scheduling and 
improves load balancing
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Pattern Selection

Task
Parallelism

Divide
and

Conquer

Geometric
Decomp.

PipelineRecursive
Data

Event-
Based
Coord.

Fork/
Join

Loop
Parallelism

Master /
Worker

SPMD 







































Table from “Patterns for Parallel Programming,” p. 125.
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Shared Data

⇨ Many techniques exist to reduce data shared by 
tasks

­ Careful partitioning
­ Replication
­ Etc.
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Shared Data

⇨ Warning signs:
­ Some data structure is accessed by multiple tasks 

during computation
­ Some task modifies the data structure
­ Some task needs the modified value in the 

computation

⇨ Example: the task queue in the master / worker 
pattern
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Shared Data

⇨ Verify that the data really is shared
­ Much effort is required to ensure proper arbitration of 

shared data and correct results
­ Synchronization adds overhead
­ Many synchronization methods implicitly limit 

scalability
­ Resulting code can be difficult for other to understand 

and maintain
­ And for the original developer to debug!
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Shared Data

⇨ Start with an abstract data type
­ Abstracting the interface to the data keeps all of the 

synchronization in one place
­ Makes it easier to change synchronization methods

­ We did this with the work queue in the Mandelbrot fractal 
generator



© Copyright Ian D. Romanick 2008

20-August-2008

Shared Data

⇨ Define, implement, and document a 
synchronization protocol

­ One-at-a-time execution
­ Non-interfering operations
­ Readers / writers
­ Reduced critical section size
­ Nested locks
­ Application-specific semantic relaxation

Increasing
Complexity
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Shared Data

⇨ Memory synchronization
­ Compiler handles most of this
­ Use volatile keyword

⇨ Task scheduling
­ Synchronization can affect scheduling
­ Consider ways to schedule tasks to minimize waiting
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Shared Queue

⇨ “Thread-safe” queue with additional design 
considerations:

­ In what order are items removed from the queue?
­ FIFO?  LIFO?  Priority order?  Other?

­ Should the queue size be fixed or grow?
­ What happens when an element is removed from an 

empty queue?
­ Related question: What happens when an element is added 

to a full queue?

­ How critical is the performance of the queue?
­ Related question: What is the level of contention on the 

queue?
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Shared Queue

⇨ Start with the simplest implementation that will 
work, and work from there

⇨ Many parallel programming environments have 
built-in shared queue primitives
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Distributed Array

⇨ Parallel programs often operate on massive data 
sets

­ Adding more processors often allows larger data sets 
rather than decreased processing time

­ Data may be so large that it won't fit into main 
memory

­ Even if it fits in memory, it certainly won't fit in the cache
­ ...even the 12MB L2 cache on some modern processors
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Distributed Array

⇨ Common array distributions:
­ 1D block – Array is partitioned into 1D sub-arrays, and 

each partition is distributed to a UE
­ This is a 1-to-1 block-to-UE mapping

­ 2D block – Array is partitioned into 2D sub-arrays, and 
each partition is distributed to a UE

­ This is also a 1-to-1 block-to-UE mapping

­ Block-cyclic – Array is partitioned into either 1D or 2D 
blocks and block are distributed round-robin to UEs

­ This is a many-to-1 block-to-UE mapping
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Distributed Array

⇨ Mapping array indexes
­ Original problem is formulated in terms of global 

indexes
­ Each UE “wants” to operate in terms of local indexes

⇨ Solution?
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Distributed Array

⇨ Mapping array indexes
­ Original problem is formulated in terms of global 

indexes
­ Each UE “wants” to operate in terms of local indexes

⇨ Solution?
­ Create an ADT to map local indexes to global indexes
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Distributed Array

⇨ Locality of reference
­ Accessing data “hot” in the cache is fastest
­ Accessing data on the local NUMA node is fastest

⇨ Choose the partition wisely
­ Partition data to maximize cache usage
­ Partition data to fit on a single NUMA node
­ etc.
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Next week...

⇨ ...and by “next week” I mean this Friday (8/22)
⇨ Atomic Operations
⇨ Lockless Algorithms
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Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other 
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service 
marks of others.
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