
© Copyright Ian D. Romanick 2008

20-August-2008

VGP393C – Week 5

⇨ Agenda:
­ Quiz #2
­ Supporting Structures

­ SPMD
­ Master / worker
­ Loop parallelism
­ Shared Queue
­ etc.

­ Assignment #2 due
­ Assignment #3 started

© Copyright Ian D. Romanick 2008

20-August-2008

Supporting Structures

Finding
Concurrency

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

Week 3

Week 2

Week 4

© Copyright Ian D. Romanick 2008

20-August-2008

Supporting Structures

Finding
Concurrency

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

Software structures that
“support the expression of
parallel algorithms.1”

1 http://www.cise.ufl.edu/research/ParallelPatterns/supporting_structures.htm

http://www.cise.ufl.edu/research/ParallelPatterns/supporting_structures.htm

© Copyright Ian D. Romanick 2008

20-August-2008

Supporting Structures

Finding
Concurrency

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

Week 3

Week 2

Week 4

Program Structures Data Structures

Supporting Structures

© Copyright Ian D. Romanick 2008

20-August-2008

Supporting Structures

Finding
Concurrency

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

Week 3

Week 2

Week 4

Program Structures

SPMD

Fork / Join

Master / Worker

Loop Parallelism

Data Structures

Supporting Structures

© Copyright Ian D. Romanick 2008

20-August-2008

SPMD

⇨ In the single program, multiple data (SPMD) pat-
tern, N UEs execute the same code concurrently
on different data

­ Each UE may have a unique ID that is also
considered to be “different data”

© Copyright Ian D. Romanick 2008

20-August-2008

SPMD

⇨ Fundamental question: can the computation be
structured so that UEs can be setup at the start
and persist through the life of the program?

­ Implicitly requires that the same (or nearly same)
code can be used on all data

­ Plays well with concurrency based on data
decompositions

© Copyright Ian D. Romanick 2008

20-August-2008

SPMD

⇨ Advantages:
­ Avoids thread creation / destruction costs implicit in

other patterns
­ Easy reuse of sequential code

­ Each thread is, basically, a copy of the sequential version

© Copyright Ian D. Romanick 2008

20-August-2008

SPMD

⇨ Common structure of SPMD programs:
­ Bootstrap – perform the “serial” initialization opera-

tions
­ Set unique IDs – Each UE gets some sort of unique

identifier. This is usually passed in, and is often de-
rived from the thread ID.

­ Run program on each UE – Each UE can use its
unique ID to achieve different behavior

­ Distribute data – Each UE receives its unique data
using its unique ID

­ Finalize – perform the “serial” shutdown procedures

© Copyright Ian D. Romanick 2008

20-August-2008

Fork / Join

⇨ A single, “master” UE creates additional UEs
(forks) and waits for them to complete (joins)

­ Names “fork” and “join” come from the name of the
old Unix process creating and wait-for-completion
functions

­ Implies that threads are created and terminated, but
this is not strictly necessary

­ The join can be implemented as a true join or a barrier

© Copyright Ian D. Romanick 2008

20-August-2008

Fork / Join

⇨ Fundamental questions:
­ How is data partitioned into local and global blocks?
­ How do the UEs interact?
­ What does the “master” thread do while waiting?
­ How are tasks mapped to UEs?

© Copyright Ian D. Romanick 2008

20-August-2008

Fork / Join

⇨ Two common task mappings:
­ “Direct” mapping – UEs have one task mapped
­ “Indirect” mapping – Tasks are dynamically assigned

to threads
­ Thread creation and destruction is expensive
­ This cost is mitigated by creating a static pool of threads
­ Threads are “mapped” as needed by sending them tasks
­ Usually one UE per PE

© Copyright Ian D. Romanick 2008

20-August-2008

Fork / Join

⇨ Conceptually similar to SPMD
­ Fork / Join can be used at multiple levels within the

larger program, but SPMD is a top-level structure
­ SPMD fixes the number of UEs at the start
­ All UEs in SPMD perform the same computation

© Copyright Ian D. Romanick 2008

20-August-2008

Master / Worker

⇨ Master / worker pattern works well when:
­ Per-task work loads are variable and unpredictable

­ i.e., static scheduling doesn't work well

­ Computationally intensive part of the program isn't a
loop or loop-like

­ Computer power of available PEs varies
­ As is the case with some SMT implementations

© Copyright Ian D. Romanick 2008

20-August-2008

Master / Worker

Master Worker

Worker

Worker

Worker

Work
Queue

© Copyright Ian D. Romanick 2008

20-August-2008

Master / Worker

Master Worker

Worker

Worker

Worker

Work
Queue

Workers generate
additional tasks

© Copyright Ian D. Romanick 2008

20-August-2008

Master / Worker

Master Worker

Worker

Worker

Worker

Work
Queue

Master becomes a worker
after generating initial task

© Copyright Ian D. Romanick 2008

20-August-2008

Master / Worker

⇨ Fundamental question: How do workers
determine computation is complete?

­ We've already encountered this problem in the
Mandelbrot fractal generator

⇨ Several possible strategies for simpler cases:
­ If all work is known at the start, workers can terminate

when the work queue is empty
­ Master or a worker can detect completion and add a

poison pill task to the queue
­ Tree-like computation can hierarchically determine

that computation has completed
­ Propagate completion “up” the tree

© Copyright Ian D. Romanick 2008

20-August-2008

Loop Parallelism

⇨ Many programs have a small number of
computationally expensive loops

© Copyright Ian D. Romanick 2008

20-August-2008

Loop Parallelism

⇨ Advantages:
­ Sequential equivalence – Parallelized loops can easily

be serialized. This makes code easier to test, debug,
and maintain

­ Incremental parallelization – One loop can be paral-
lelized at a time. Step-by-step parallelization allows
incremental test and allows parallelization efforts to
stop when the program is “fast enough.”

© Copyright Ian D. Romanick 2008

20-August-2008

Loop Parallelism

⇨ Initial steps:
­ Find the “hot spots”
­ Eliminate loop-carried dependencies
­ Parallelize the loops
­ Optimize scheduling

⇨ Additional transformations:
­ Merge loops
­ Coalesce nested loops

© Copyright Ian D. Romanick 2008

20-August-2008

Loop Parallelism

for (i = 0; i < N; i++) {
 do_some_work(i);
}

/* code that does not depend on the results of
 * the above loop and that the following loop
 * does not depend on
 */
...

for (i = 0; i < N; i++) {
 do_other_work(i);
}

© Copyright Ian D. Romanick 2008

20-August-2008

Loop Parallelism

for (i = 0; i < N; i++) {
 do_some_work(i);
 do_other_work(i);
}

... This transformation can
happen before making
the loop parallel...much
easier to test!

⇨ More work in each iteration (task) reduces the
total parallel overhead

© Copyright Ian D. Romanick 2008

20-August-2008

Loop Parallelism

for (i = 0; i < N; i++) {
 for (j = 0; j < M; j++) {
 do_some_work(i, j);
 }
}

© Copyright Ian D. Romanick 2008

20-August-2008

Loop Parallelism

for (i = 0; i < N * M; i++) {
 do_some_work(i / M, i % M);
}

This transformation can
happen before making
the loop parallel...much
easier to test!

⇨ More iterations (tasks) simplifies scheduling and
improves load balancing

© Copyright Ian D. Romanick 2008

20-August-2008

Pattern Selection

Task
Parallelism

Divide
and

Conquer

Geometric
Decomp.

PipelineRecursive
Data

Event-
Based
Coord.

Fork/
Join

Loop
Parallelism

Master /
Worker

SPMD 







































Table from “Patterns for Parallel Programming,” p. 125.

© Copyright Ian D. Romanick 2008

20-August-2008

Break

© Copyright Ian D. Romanick 2008

20-August-2008

Supporting Structures

Finding
Concurrency

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

Week 3

Week 2

Week 4

Program Structures

SPMD

Fork / Join

Master / Worker

Loop Parallelism

Data Structures

Shared Data

Shared Queue

Distributed Array

Supporting Structures

© Copyright Ian D. Romanick 2008

20-August-2008

Shared Data

⇨ Many techniques exist to reduce data shared by
tasks

­ Careful partitioning
­ Replication
­ Etc.

© Copyright Ian D. Romanick 2008

20-August-2008

Shared Data

⇨ Warning signs:
­ Some data structure is accessed by multiple tasks

during computation
­ Some task modifies the data structure
­ Some task needs the modified value in the

computation

⇨ Example: the task queue in the master / worker
pattern

© Copyright Ian D. Romanick 2008

20-August-2008

Shared Data

⇨ Verify that the data really is shared
­ Much effort is required to ensure proper arbitration of

shared data and correct results
­ Synchronization adds overhead
­ Many synchronization methods implicitly limit

scalability
­ Resulting code can be difficult for other to understand

and maintain
­ And for the original developer to debug!

© Copyright Ian D. Romanick 2008

20-August-2008

Shared Data

⇨ Start with an abstract data type
­ Abstracting the interface to the data keeps all of the

synchronization in one place
­ Makes it easier to change synchronization methods

­ We did this with the work queue in the Mandelbrot fractal
generator

© Copyright Ian D. Romanick 2008

20-August-2008

Shared Data

⇨ Define, implement, and document a
synchronization protocol

­ One-at-a-time execution
­ Non-interfering operations
­ Readers / writers
­ Reduced critical section size
­ Nested locks
­ Application-specific semantic relaxation

Increasing
Complexity

© Copyright Ian D. Romanick 2008

20-August-2008

Shared Data

⇨ Memory synchronization
­ Compiler handles most of this
­ Use volatile keyword

⇨ Task scheduling
­ Synchronization can affect scheduling
­ Consider ways to schedule tasks to minimize waiting

© Copyright Ian D. Romanick 2008

20-August-2008

Shared Queue

⇨ “Thread-safe” queue with additional design
considerations:

­ In what order are items removed from the queue?
­ FIFO? LIFO? Priority order? Other?

­ Should the queue size be fixed or grow?
­ What happens when an element is removed from an

empty queue?
­ Related question: What happens when an element is added

to a full queue?

­ How critical is the performance of the queue?
­ Related question: What is the level of contention on the

queue?

© Copyright Ian D. Romanick 2008

20-August-2008

Shared Queue

⇨ Start with the simplest implementation that will
work, and work from there

⇨ Many parallel programming environments have
built-in shared queue primitives

© Copyright Ian D. Romanick 2008

20-August-2008

Distributed Array

⇨ Parallel programs often operate on massive data
sets

­ Adding more processors often allows larger data sets
rather than decreased processing time

­ Data may be so large that it won't fit into main
memory

­ Even if it fits in memory, it certainly won't fit in the cache
­ ...even the 12MB L2 cache on some modern processors

© Copyright Ian D. Romanick 2008

20-August-2008

Distributed Array

⇨ Common array distributions:
­ 1D block – Array is partitioned into 1D sub-arrays, and

each partition is distributed to a UE
­ This is a 1-to-1 block-to-UE mapping

­ 2D block – Array is partitioned into 2D sub-arrays, and
each partition is distributed to a UE

­ This is also a 1-to-1 block-to-UE mapping

­ Block-cyclic – Array is partitioned into either 1D or 2D
blocks and block are distributed round-robin to UEs

­ This is a many-to-1 block-to-UE mapping

© Copyright Ian D. Romanick 2008

20-August-2008

Distributed Array

⇨ Mapping array indexes
­ Original problem is formulated in terms of global

indexes
­ Each UE “wants” to operate in terms of local indexes

⇨ Solution?

© Copyright Ian D. Romanick 2008

20-August-2008

Distributed Array

⇨ Mapping array indexes
­ Original problem is formulated in terms of global

indexes
­ Each UE “wants” to operate in terms of local indexes

⇨ Solution?
­ Create an ADT to map local indexes to global indexes

© Copyright Ian D. Romanick 2008

20-August-2008

Distributed Array

⇨ Locality of reference
­ Accessing data “hot” in the cache is fastest
­ Accessing data on the local NUMA node is fastest

⇨ Choose the partition wisely
­ Partition data to maximize cache usage
­ Partition data to fit on a single NUMA node
­ etc.

© Copyright Ian D. Romanick 2008

20-August-2008

References

Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders; "Some
Algorithm Structure and Support Patterns for Parallel Application Pro-
grams": Proceedings of the Ninth Pattern Languages of Programs
Workshop (PLoP 2002), 2002;
http://jerry.cs.uiuc.edu/~plop/plop2002/proceedings.html

http://jerry.cs.uiuc.edu/~plop/plop2002/proceedings.html

© Copyright Ian D. Romanick 2008

20-August-2008

Next week...

⇨ ...and by “next week” I mean this Friday (8/22)
⇨ Atomic Operations
⇨ Lockless Algorithms

© Copyright Ian D. Romanick 2008

20-August-2008

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

